Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323722

RESUMO

The diarrheal disease cholera is caused by the versatile and responsive bacterium Vibrio cholerae, which is capable of adapting to environmental changes. Among others, the alternative sigma factor RpoS activates response pathways, including regulation of motility- and chemotaxis-related genes under nutrient-poor conditions in V. cholerae. Although RpoS has been well characterised, links between RpoS and other regulatory networks remain unclear. In this study, we identified the ArcAB two-component system to control rpoS transcription and RpoS protein stability in V. cholerae. In a manner similar to that seen in Escherichia coli, the ArcB kinase not only activates the response regulator ArcA but also RssB, the anti-sigma factor of RpoS. Our results demonstrated that, in V. cholerae, RssB is phosphorylated by ArcB, which subsequently activates RpoS proteolysis. Furthermore, ArcA acts as a repressor of rpoS transcription. Additionally, we determined that the cysteine residue at position 180 of ArcB is crucial for signal recognition and activity. Thus, our findings provide evidence linking RpoS response to the anoxic redox control system ArcAB in V. cholerae.

2.
Elife ; 122023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37768326

RESUMO

The seventh pandemic of the diarrheal cholera disease, which began in 1960, is caused by the Gram-negative bacterium Vibrio cholerae. Its environmental persistence provoking recurring sudden outbreaks is enabled by V. cholerae's rapid adaption to changing environments involving sensory proteins like ToxR and ToxS. Located at the inner membrane, ToxR and ToxS react to environmental stimuli like bile acid, thereby inducing survival strategies for example bile resistance and virulence regulation. The presented crystal structure of the sensory domains of ToxR and ToxS in combination with multiple bile acid interaction studies, reveals that a bile binding pocket of ToxS is only properly folded upon binding to ToxR. Our data proposes an interdependent functionality between ToxR transcriptional activity and ToxS sensory function. These findings support the previously suggested link between ToxRS and VtrAC-like co-component systems. Besides VtrAC, ToxRS is now the only experimentally determined structure within this recently defined superfamily, further emphasizing its significance. In-depth analysis of the ToxRS complex reveals its remarkable conservation across various Vibrio species, underlining the significance of conserved residues in the ToxS barrel and the more diverse ToxR sensory domain. Unravelling the intricate mechanisms governing ToxRS's environmental sensing capabilities, provides a promising tool for disruption of this vital interaction, ultimately inhibiting Vibrio's survival and virulence. Our findings hold far-reaching implications for all Vibrio strains that rely on the ToxRS system as a shared sensory cornerstone for adapting to their surroundings.


Cholera is a contagious diarrheal disease that leads to about 20,000 to 140,000 yearly deaths. It is caused by a bacterium called Vibrio cholerae, which can survive in harsh conditions and many environments. It often contaminates water, where it lives in an energy-conserving mode. But when humans consume Vibrio cholerae-contaminated water or food, the bacterium can sense its new environment and switch into a high-energy consuming state, causing fever, diarrhea, and vomiting. Vibrio cholerae recognizes bile acid in the human stomach, which signals that the bacterium has reached ideal conditions for causing disease. So far, it has been unclear, how exactly the bacterium detects bile acid. Understanding how these bacteria sense bile acid, could help scientists develop new ways to prevent cholera outbreaks or treat infections. Gubensäk et al. analysed two proteins from the Vibrio cholerae bacterium, called ToxR and ToxS, which are located below the bacteria's protective membrane. More detailed analyses showed that the two proteins bind together, forming a bile-binding pocket. When correctly assembled, this bile-sensing machine detects bile concentrations in the body, allowing the bacterium to adapt to the local conditions. Using crystal structures, a series of interaction studies, and modeling software, Gubensäk et al. detailed step-by-step how the two proteins sense bile acid and help the bacteria adapt and thrive in the human body. The results confirm the results of previous studies that implicated ToxR and ToxS in bile sensing and provide new details about the process. Scientists may use this information to develop new ways to interfere with the bacteria's bile-sensing and gut adaptation processes. They may also use the information to screen for existing drugs that block bile sensing and then test as cholera treatments or prevention strategies in clinical trials. New cholera treatment or prevention approaches that don't rely on antibiotics may help public health officials respond to growing numbers of cholera outbreaks and to prevent the spread of antibiotic-resistant bacteria.


Assuntos
Vibrio cholerae , Vibrio , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Bactérias/metabolismo , Bile/metabolismo , Vibrio cholerae/metabolismo , Ácidos e Sais Biliares/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
Int J Med Microbiol ; 312(4): 151555, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35483107

RESUMO

Cholera is a life-threatening diarrheal disease caused by the human pathogenic bacterium Vibrio cholerae. Regulatory elements are essential for bacterial transition between the natural aquatic environment and the human host. One of them is the alternative sigma factor RpoS and its anti-sigma factor RssB. Regulation principles seem to be conserved among RpoS/RssB interaction modes between V. cholerae and Enterobacteriaceae species, however the associated input and output pathways seem different. In Escherichia coli, RpoS/RssB is important for the activation of an emergency program to increase persistence and survival. Whereas, it activates motility and chemotaxis in V. cholerae, used strategically to escape from starvation conditions. We characterised a starvation-induced interaction model showing a negative feedback loop between RpoS and RssB expression. We showed by genotypic and phenotypic analysis that rssB influences motility, growth behaviour, colonization fitness, and post-infectious survival. Furthermore, we found that RssB itself is a substrate for proteolysis and a critical Asp mutation was identified and characterised to influence rssB phenotypes and their interaction with RpoS. In summary, we present novel information about the regulatory interaction between RpoS and RssB being active under in vivo colonization conditions and mark an extension to the feedback regulation circuit, showing that RssB is a substrate for proteolysis.


Assuntos
Proteínas de Escherichia coli , Vibrio cholerae , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fator sigma/genética , Fator sigma/metabolismo , Fatores de Transcrição/genética , Vibrio cholerae/metabolismo
4.
J Biol Chem ; 297(4): 101167, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34487759

RESUMO

ToxR represents an essential transcription factor of Vibrio cholerae, which is involved in the regulation of multiple, mainly virulence associated genes. Its versatile functionality as activator, repressor or coactivator suggests a complex regulatory mechanism, whose clarification is essential for a better understanding of the virulence expression system of V. cholerae. Here, we provide structural information elucidating the organization and binding behavior of the cytoplasmic DNA-binding domain of ToxR (cToxR), containing a winged helix-turn-helix (wHTH) motif. Our analysis reveals unexpected structural features of this domain expanding our knowledge of a poorly defined subfamily of wHTH proteins. cToxR forms an extraordinary long α-loop and furthermore has an additional C-terminal beta strand, contacting the N-terminus and thus leading to a compact fold. The identification of the exact interactions between ToxR and DNA contributes to a deeper understanding of this regulatory process. Our findings not only show general binding of the soluble cytoplasmic domain of ToxR to DNA, but also indicate a higher affinity for the toxT motif. These results support the current theory of ToxR being a "DNA-catcher" to enable binding of the transcription factor TcpP and thus activation of virulence-associated toxT transcription. Although, TcpP and ToxR interaction is assumed to be crucial in the activation of the toxT genes, we could not detect an interaction event of their isolated cytoplasmic domains. We therefore conclude that other factors are needed to establish this protein-protein interaction, e.g., membrane attachment, the presence of their full-length proteins and/or other intermediary proteins that may facilitate binding.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Fatores de Transcrição/química , Vibrio cholerae/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Sequências Hélice-Volta-Hélice , Domínios Proteicos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
5.
Mol Microbiol ; 115(6): 1244-1261, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33330989

RESUMO

Bile resistance is essential for enteric pathogens, as exemplified by Vibrio cholerae, the causative agent of cholera. The outer membrane porin OmpU confers bacterial survival and colonization advantages in the presence of host-derived antimicrobial peptides as well as bile. Expression of ompU is controlled by the virulence regulator ToxR. rpoE knockouts are accompanied by suppressor mutations causing ompU downregulation. Therefore, OmpU constitutes an intersection of the ToxR regulon and the σE -pathway in V. cholerae. To understand the mechanism by which the sigma factor σE regulates OmpU synthesis, we performed transcription studies using ompU reporter fusions and immunoblot analysis. Our data revealed an increase in ompU promoter activity in ΔrpoE strains, as well as in a ΔompU background, indicating a negative feedback regulation circuit of ompU expression. This regulation seems necessary, since elevated lethality rates of ΔrpoE strains occur upon ompU overexpression. Manipulation of OmpU's C-terminal portion revealed its relevance for protein stability and potency of σE release. Furthermore, ΔrpoE strains are still capable of elevating OmpU levels under membrane stress conditions triggered by the bile salt sodium deoxycholate. This study provides new details about the impact of σE on ompU regulation, which is critical to the pathogen's intestinal survival.


Assuntos
Adesinas Bacterianas/biossíntese , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fator sigma/genética , Fatores de Transcrição/metabolismo , Vibrio cholerae/genética , Adesinas Bacterianas/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/genética , Porinas/biossíntese , Porinas/genética , Regiões Promotoras Genéticas/genética , Vibrio cholerae/metabolismo
6.
Mol Microbiol ; 115(6): 1277-1291, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33368680

RESUMO

The transmembrane protein ToxR plays a key role in the virulence expression system of Vibrio cholerae. The activity of ToxR is dependent on its periplasmic sensor domain (ToxRp) and on the inner membrane protein ToxS. Herein, we present the Nuclear Magnetic Resonance NMR solution structure of the sensory ToxRp containing an intramolecular disulfide bond. The presented structural and dynamic experiments with reduced and oxidized ToxRp propose an explanation for the increased proteolytic sensitivity of reduced ToxR. Additionally, for the first time, we could identify the formation of a strong heterodimer complex between the periplasmic domains of ToxR and ToxS in solution. NMR interaction studies reveal that binding of ToxS is not dependent on the redox state of ToxR cysteines, and formed complexes are structurally similar. By monitoring the proteolytic cleavage of ToxRp with NMR, we additionally provide a direct evidence of ToxS protective function. Taken together our results suggest that ToxR activity is regulated by its stability which is, on the one hand, dependent on the redox states of its cysteines, influencing the stability of its fold, and on the other hand, on its interaction with ToxS, which binds independent on the cysteines and acts as a protection against proteases.


Assuntos
Proteínas de Bactérias/química , Cisteína/química , Proteínas de Ligação a DNA/química , Proteínas de Membrana/química , Fatores de Transcrição/química , Vibrio cholerae/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana/genética , Complexos Multiproteicos/química , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Domínios Proteicos/fisiologia , Dobramento de Proteína , Proteólise , Fatores de Transcrição/genética , Vibrio cholerae/metabolismo , Virulência
7.
Mol Microbiol ; 114(2): 262-278, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32251547

RESUMO

Protein-protein interactions (PPIs) are key mechanisms in the maintenance of biological regulatory networks. Herein, we characterize PPIs within ToxR and its co-activator, ToxS, to understand the mechanisms of ToxR transcription factor activation. ToxR is a key transcription activator that is supported by ToxS for virulence gene regulation in Vibrio cholerae. ToxR comprises a cytoplasmic DNA-binding domain that is linked by a transmembrane domain to a periplasmic signal receiver domain containing two cysteine residues. ToxR-ToxR and ToxR-ToxS PPIs were detected using an adenylate-cyclase-based bacterial two-hybrid system approach in Escherichia coli. We found that the ToxR-ToxR PPIs are significantly increased in response to ToxR operators, the co-activator ToxS and bile salts. We suggest that ToxS and bile salts promote the interaction between ToxR molecules that ultimately results in dimerization. Upon binding of operators, ToxR-ToxR PPIs are found at the highest frequency. Moreover, disulfide-bond-dependent interaction in the periplasm results in homodimer formation that is promoted by DNA binding. The formation of these homodimers and the associated transcriptional activity of ToxR were strongly dependent on the oxidoreductases DsbA/DsbC. These findings show that protein and non-protein partners, that either transiently or stably interact with ToxR, fine-tune ToxR PPIs, and its associated transcriptional activity in changing environments.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Transcrição/metabolismo , Vibrio cholerae/metabolismo , Proteínas de Bactérias/genética , Ácidos e Sais Biliares/metabolismo , Sítios de Ligação/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Interações Hospedeiro-Patógeno/fisiologia , Proteínas de Membrana/genética , Domínios Proteicos/genética , Mapas de Interação de Proteínas/fisiologia , Fatores de Transcrição/genética , Vibrio cholerae/patogenicidade , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
8.
Cell Host Microbe ; 27(2): 225-237.e8, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31901519

RESUMO

Gram-negative bacteria release outer membrane vesicles into the external milieu to deliver effector molecules that alter the host and facilitate virulence. Vesicle formation is driven by phospholipid accumulation in the outer membrane and regulated by the phospholipid transporter VacJ/Yrb. We use the facultative human pathogen Vibrio cholerae to show that VacJ/Yrb is silenced early during mammalian infection, which stimulates vesiculation that expedites bacterial surface exchange and adaptation to the host environment. Hypervesiculating strains rapidly alter their bacterial membrane composition and exhibit enhanced intestinal colonization fitness. This adaptation is exemplified by faster accumulation of glycine-modified lipopolysaccharide (LPS) and depletion of outer membrane porin OmpT, which confers resistance to host-derived antimicrobial peptides and bile, respectively. The competitive advantage of hypervesiculation is lost upon pre-adaptation to bile and antimicrobial peptides, indicating the importance of these adaptive processes. Thus, bacteria use outer membrane vesiculation to exchange cell surface components, thereby increasing survival during mammalian infection.


Assuntos
Membrana Externa Bacteriana/metabolismo , Interações entre Hospedeiro e Microrganismos , Vesículas Transportadoras/metabolismo , Vibrio cholerae/patogenicidade , Adesinas Bacterianas/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Bile/metabolismo , Camundongos , Porinas/metabolismo , Vibrio cholerae/metabolismo
9.
Front Microbiol ; 10: 2780, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849912

RESUMO

Protein secretion plays a crucial role for bacterial pathogens, exemplified by facultative human-pathogen Vibrio cholerae, which secretes various proteinaceous effectors at different stages of its lifecycle. Accordingly, the identification of factors impacting on protein secretion is important to understand the bacterial pathophysiology. PglLVc, a predicted oligosaccharyltransferase of V. cholerae, has been recently shown to exhibit O-glycosylation activity with relaxed glycan specificity in an engineered Escherichia coli system. By engineering V. cholerae strains to express a defined, undecaprenyl diphosphate-linked glycoform precursor, we confirmed functional O-linked protein glycosylation activity of PglLVc in V. cholerae. We demonstrate that PglLVc is required for the glycosylation of multiple V. cholerae proteins, including periplasmic chaperones such as DegP, that are required for efficient type II-dependent secretion. Moreover, defined deletion mutants and complementation strains provided first insights into the physiological role of O-linked protein glycosylation in V. cholerae. RbmD, a protein with structural similarities to PglLVc and other established oligosaccharyltransferases (OTases), was also included in this phenotypical characterization. Remarkably, presence or absence of PglLVc and RbmD impacts the secretion of proteins via the type II secretion system (T2SS). This is highlighted by altered cholera toxin (CT) secretion, chitin utilization and biofilm formation observed in ΔpglL Vc and ΔrbmD single or double mutants. This work thus establishes a unique connection between broad spectrum O-linked protein glycosylation and the efficacy of type II-dependent protein secretion critical to the pathogen's lifecycle.

10.
Front Microbiol ; 10: 2057, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551990

RESUMO

The Gram-negative bacterium Vibrio cholerae encodes two nucleases, Dns and Xds, which play a major role during the human pathogen's lifecycle. Dns and Xds control three-dimensional biofilm formation and bacterial detachment from biofilms via degradation of extracellular DNA and thus contribute to the environmental, inter-epidemic persistence of the pathogen. During intestinal colonization the enzymes help evade the innate immune response, and therefore promote survival by mediating escape from neutrophil extracellular traps. Xds has the additional function of degrading extracellular DNA down to nucleotides, which are an important nutrient source for V. cholerae. Thus, Xds is a key enzyme for survival fitness during distinct stages of the V. cholerae lifecycle and could be a potential therapeutic target. This study provides detailed information about the enzymatic properties of Xds using purified protein in combination with a real time nuclease activity assay. The data define an optimal buffer composition for Xds activity as 50 mM Tris/HCl pH 7, 100 mM NaCl, 10 mM MgCl2, and 20 mM CaCl2. Moreover, maximal activity was observed using substrate DNA with low GC content and ambient temperatures of 20-25°C. In silico analysis and homology modeling predicted an exonuclease domain in the C-terminal part of the protein. Biochemical analyses with truncated variants and point mutants of Xds confirm that the C-terminal region is sufficient for nuclease activity. We also find that residues D787 and H837 within the predicted exonuclease domain are key to formation of the catalytic center.

11.
Artigo em Inglês | MEDLINE | ID: mdl-31293982

RESUMO

The lifecycle of the causative agent of the severe secretory diarrheal disease cholera, Vibrio cholerae, is characterized by the transition between two dissimilar habitats, i.e., as a natural inhabitant of aquatic ecosystems and as a pathogen in the human gastrointestinal tract. Vibrio cholerae faces diverse stressors along its lifecycle, which require effective adaptation mechanisms to facilitate the survival fitness. Not surprisingly, the pathogen's transcriptome undergoes global changes during the different stages of the lifecycle. Moreover, recent evidence indicates that several of the transcription factors (i.e., ToxR, TcpP, and ToxT) and alternative sigma factors (i.e., FliA, RpoS, and RpoE) involved in transcriptional regulations along the lifecycle are controlled by regulated proteolysis. This post-translational control ensures a fast strategy by the pathogen to control cellular checkpoints and thereby rapidly respond to changing conditions. In this review, we discuss selected targets for regulated proteolysis activated by various stressors, which represent a key feature for fast adaptation of V. cholerae.


Assuntos
Adaptação Fisiológica/fisiologia , Proteólise , Estresse Fisiológico , Vibrio cholerae/metabolismo , Proteínas de Bactérias , Ecossistema , Face/microbiologia , Trato Gastrointestinal/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Estágios do Ciclo de Vida , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Vibrio cholerae/crescimento & desenvolvimento
12.
Mol Microbiol ; 110(5): 796-810, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30218472

RESUMO

In Vibrio cholerae, virulence gene expression is regulated by a transmembrane-localized transcription factor complex designated as ToxRS. ToxR harbours two cysteines in the periplasmic domain that can form inter- and intramolecular disulfide bonds. In this study, we investigated the σE -dependent inner membrane proteolysis of ToxR, which occurs via the periplasmic-localized proteases DegS and DegP. Both proteases respond to the redox state of the two cysteine thiol groups of ToxR. Interestingly, in the presence of sodium deoxycholate, ToxR proteolysis is blocked independently of ToxS, whereas ToxR activation by bile salts requires ToxS function. From these data, we identified at least two levels of control for ToxR activation by sodiumdeoxycholate. First, bile inhibits ToxR degradation under starvation and alkaline pH or under conditions in which DegPS responds to the reduced disulfide bonds of ToxR. The second level links bile to ToxRS complex formation and further activation of its transcription factor activity. Overall, our data suggest a comprehensive bile sensory function for the ToxRS complex during host colonization.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteólise , Fatores de Transcrição/metabolismo , Vibrio cholerae/metabolismo , Cisteína/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Oxirredução , Periplasma/metabolismo , Proteínas Periplásmicas/metabolismo , Domínios Proteicos , Serina Endopeptidases/metabolismo , Compostos de Sulfidrila/metabolismo
13.
Proc Natl Acad Sci U S A ; 115(10): E2376-E2385, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463743

RESUMO

The facultative human pathogen Vibrio cholerae changes its transcriptional profile upon oral ingestion by the host to facilitate survival and colonization fitness. Here, we used a modified version of recombination-based in vivo expression technology to investigate gene silencing during the in vivo passage, which has been understudied. Using a murine model of cholera, we screened a V. cholerae transposon library composed of 10,000 randomly generated reporter fusions and identified 101 in vivo repressed (ivr) genes. Our data indicate that constitutive expression of ivr genes reduces colonization fitness, highlighting the necessity to down-regulate these genes in vivo. For example, the ivr gene clcA, encoding an H+/Cl- transporter, could be linked to the acid tolerance response against hydrochloric acid. In a chloride-dependent manner, ClcA facilitates survival under low pH (e.g., the stomach), but its presence becomes detrimental under alkaline conditions (e.g., lower gastrointestinal tract). This pH-dependent clcA expression is controlled by the LysR-type activator AphB, which acts in concert with AphA to initiate the virulence cascade in V. cholerae after oral ingestion. Thus, transcriptional networks dictating induction of virulence factors and the repression of ivr genes overlap to regulate in vivo colonization dynamics. Overall, the results presented herein highlight the impact of spatiotemporal gene silencing in vivo. The molecular characterization of the underlying mechanisms can provide important insights into in vivo physiology and virulence network regulation.


Assuntos
Antiporters/metabolismo , Proteínas de Bactérias/metabolismo , Cólera/microbiologia , Trato Gastrointestinal/microbiologia , Vibrio cholerae/metabolismo , Ácidos/metabolismo , Animais , Antiporters/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Regiões Promotoras Genéticas , Vibrio cholerae/genética
14.
Int J Med Microbiol ; 307(3): 154-165, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28228329

RESUMO

Vibrio cholerae can colonize the gastrointestinal track of humans and cause the disease cholera. During colonization, the alternative sigma factor, RpoS, controls a process known as "mucosal escape response," defining a specific spatial and temporal response and effecting chemotaxis and motility. In this report, the expression and proteolytic control of RpoS in V. cholerae was characterized. To date, aspects of proteolysis control, the involved components, and proteolysis regulation have not been addressed for RpoS in V. cholerae. Similar to Escherichia coli, we find that the RpoS protein is subjected to regulated intracellular proteolysis, which is mediated by homologues of the proteolysis-targeting factor RssB and the protease complex ClpXP. As demonstrated, RpoS expression transiently peaks after cells are shifted from rich to minimal growth medium. This peak level is dependent on (p)ppGpp-activated rpoS transcription and controlled RpoS proteolysis. The RpoS peak level also correlates with induction of a chemotaxis gene, encoding a methyl-accepting chemotaxis protein, earlier identified to belong to the mucosal escape response pathway. These results suggest that the RpoS expression peak is linked to (p)ppGpp alarmone increase, leading to enhanced motility and chemotaxis, and possibly contributing to the mucosal escape response.


Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidase Clp/metabolismo , GTP Pirofosfoquinase/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator sigma/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Quimiotaxia , Meios de Cultura/química , Humanos , Proteólise , Vibrio cholerae/crescimento & desenvolvimento
15.
Int J Med Microbiol ; 307(2): 139-146, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28179078

RESUMO

Haemophilus influenzae harbours a complex array of factors to resist human complement attack. As non-typeable H. influenzae (NTHi) strains do not possess a capsule, their serum resistance mainly depends on other mechanisms including LOS decoration. In this report, we describe the identification of a highly serum resistant, nasopharyngeal isolate (NTHi23) by screening a collection of 77 clinical isolates. For NTHi23, we defined the MLST sequence type 1133, which matches the profile of a previously published invasive NTHi isolate. A detailed genetic analysis revealed that NTHi23 shares several complement evading mechanisms with invasive disease isolates. These mechanisms include the functional expression of a retrograde phospholipid trafficking system and the presumable decoration of the LOS structure with sialic acid. By screening the NTHi23 population for spontaneous decreased serum resistance, we identified a clone, which was about 103-fold more sensitive to complement-mediated killing. Genome-wide analysis of this isolate revealed a phase variation in the N'-terminal region of lpsA, leading to a truncated version of the glycosyltransferase (LpsA). We further showed that a NTHi23 lpsA mutant exhibits a decreased invasion rate into human alveolar basal epithelial cells. Since only a small proportion of the NTHi23 population expressed the serum sensitive phenotype, resulting from lpsA phase-off, we conclude that the nasopharyngeal environment selected for a population expressing the intact and functional glycosyltransferase.


Assuntos
Variação Antigênica , Atividade Bactericida do Sangue , Haemophilus influenzae/imunologia , Haemophilus influenzae/fisiologia , Nasofaringe/microbiologia , Adulto , Células Epiteliais Alveolares/microbiologia , Linhagem Celular , Criança , Endocitose , Genótipo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Haemophilus influenzae/genética , Haemophilus influenzae/isolamento & purificação , Humanos , Evasão da Resposta Imune , Tipagem de Sequências Multilocus
16.
mBio ; 7(4)2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27531914

RESUMO

Recent research has focused on the biological role of outer membrane vesicles (OMVs), which are derived from the outer membranes (OMs) of Gram-negative bacteria, and their potential exploitation as therapeutics. OMVs have been characterized in many ways and functions. Until recently, research focused on hypothetical and empirical models that addressed the molecular mechanisms of OMV biogenesis, such as vesicles bulging from the OM in various ways. The recently reported study by Elhenawy et al. (mBio 7:e00940-16, 2016, http://dx.doi.org/10.1128/mBio.00940-16) provided further insights into OMV biogenesis of Salmonella enterica serovar Typhimurium. That study showed that deacylation of lipopolysaccharides (LPS) influences the level of OMV production and, furthermore, determines a sorting of high versus low acylated LPS in OMs and OMVs, respectively. Interestingly, deacylation may inversely correlate with other LPS modifications, suggesting some synergy toward optimized host resistance via best OM compositions for S Typhimurium.


Assuntos
Bactérias Gram-Negativas , Salmonella typhimurium , Transporte Biológico , Exossomos , Lipopolissacarídeos
17.
Int J Med Microbiol ; 306(6): 452-62, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27345492

RESUMO

The facultative human pathogen Vibrio cholerae has to adapt to different environmental conditions along its lifecycle by means of transcriptional, translational and post-translational regulation. This study provides a first comprehensive analysis regarding the contribution of the cytoplasmic AAA+ proteases Lon, ClpP and HslV to distinct features of V. cholerae behaviour, including biofilm formation, motility, cholera toxin expression and colonization fitness in the mouse model. While absence of HslV did not yield to any altered phenotype compared to wildtype, absence of Lon or ClpP resulted in significantly reduced colonization in vivo. In addition, a Δlon deletion mutant showed altered biofilm formation and increased motility, which could be correlated with higher expression of V. cholerae flagella gene class IV. Concordantly, we could show by immunoblot analysis, that Lon is the main protease responsible for proteolytic control of FliA, which is required for class IV flagella gene transcription, but also downregulates virulence gene expression. FliA becomes highly sensitive to proteolytic degradation in absence of its anti-sigma factor FlgM, a scenario reported to occur during mucosal penetration due to FlgM secretion through the broken flagellum. Our results confirm that the high stability of FliA in the absence of Lon results in less cholera toxin and toxin corgulated pilus production under virulence gene inducing conditions and in the presence of a damaged flagellum. Thus, the data presented herein provide a molecular explanation on how V. cholerae can achieve full expression of virulence genes during early stages of colonization, despite FliA getting liberated from the anti-sigma factor FlgM.


Assuntos
Endopeptidase Clp/metabolismo , Peptídeo Hidrolases/metabolismo , Mapas de Interação de Proteínas , Vibrio cholerae/enzimologia , Vibrio cholerae/fisiologia , Animais , Biofilmes/crescimento & desenvolvimento , Toxina da Cólera/metabolismo , Humanos , Mucosa Intestinal/microbiologia , Locomoção , Camundongos , Vibrio cholerae/crescimento & desenvolvimento , Vibrio cholerae/metabolismo
18.
Nat Commun ; 7: 10515, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26806181

RESUMO

Bacterial outer membrane vesicles (OMVs) have important biological roles in pathogenesis and intercellular interactions, but a general mechanism of OMV formation is lacking. Here we show that the VacJ/Yrb ABC (ATP-binding cassette) transport system, a proposed phospholipid transporter, is involved in OMV formation. Deletion or repression of VacJ/Yrb increases OMV production in two distantly related Gram-negative bacteria, Haemophilus influenzae and Vibrio cholerae. Lipidome analyses demonstrate that OMVs from VacJ/Yrb-defective mutants in H. influenzae are enriched in phospholipids and certain fatty acids. Furthermore, we demonstrate that OMV production and regulation of the VacJ/Yrb ABC transport system respond to iron starvation. Our results suggest a new general mechanism of OMV biogenesis based on phospholipid accumulation in the outer leaflet of the outer membrane. This mechanism is highly conserved among Gram-negative bacteria, provides a means for regulation, can account for OMV formation under all growth conditions, and might have important pathophysiological roles in vivo.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Vesículas Citoplasmáticas/fisiologia , Haemophilus influenzae/fisiologia , Biogênese de Organelas , Vibrio cholerae/fisiologia , Animais , Escherichia coli , Feminino , Camundongos Endogâmicos BALB C
19.
Mol Microbiol ; 99(3): 470-83, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26202476

RESUMO

As it became evident recently, extracellular DNA could be a versatile nutrient source of the facultative pathogen Vibrio cholerae along the different stages of its life cycle. By the use of two extracellular nucleases and periplasmic phosphatases, V. cholerae degrades extracellular DNA to nucleosides. In this study, we investigated the nucleoside uptake via identification and characterization of VCA0179, VC1953 and VC2352 representing the three nucleoside transport systems in V. cholerae. Based on our results VC2352 seems to be the dominant nucleoside transporter. Nevertheless, all three transporters are functional and can contribute to the utilization of nucleosides as a sole source of carbon or nitrogen. We found that the transcriptional activity of these three distal genes is equally promoted or antagonized by CRP or CytR respectively. Finally, mutants impaired for nucleoside uptake exhibit decreased transition fitness from the host into low carbon environments along the life cycle of V. cholerae.


Assuntos
Cólera/microbiologia , Nucleosídeos/metabolismo , Vibrio cholerae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Cólera/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Proteínas de Transporte de Nucleosídeos/genética , Proteínas de Transporte de Nucleosídeos/metabolismo , Vibrio cholerae/genética
20.
Front Microbiol ; 6: 823, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26322032

RESUMO

Enteric infections induced by pathogens like Vibrio cholerae and enterotoxigenic Escherichia coli (ETEC) remain a massive burden in developing countries with increasing morbidity and mortality rates. Previously, we showed that the immunization with genetically detoxified outer membrane vesicles (OMVs) derived from V. cholerae elicits a protective immune response based on the generation of O antigen antibodies, which effectively block the motility by binding to the sheathed flagellum. In this study, we investigated the potential of lipopolysaccharide (LPS)-modified and toxin negative OMVs isolated from V. cholerae and ETEC as a combined OMV vaccine candidate. Our results indicate that the immunization with V. cholerae or ETEC OMVs induced a species-specific immune response, whereas the combination of both OMV species resulted in a high-titer, protective immune response against both pathogens. Interestingly, the immunization with V. cholerae OMVs alone resulted in a so far uncharacterized and cholera toxin B-subunit (CTB) independent protection mechanism against an ETEC colonization. Furthermore, we investigated the potential use of V. cholerae OMVs as delivery vehicles for the heterologously expression of the ETEC surface antigens, CFA/I, and FliC. Although we induced a detectable immune response against both heterologously expressed antigens, none of these approaches resulted in an improved protection compared to a simple combination of V. cholerae and ETEC OMVs. Finally, we expanded the current protection model from V. cholerae to ETEC by demonstrating that the inhibition of motility via anti-FliC antibodies represents a relevant protection mechanism of an OMV-based ETEC vaccine candidate in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...